EWLQ090G-SS EWLQ100G-SS EWLQ120G-SS EWLQ130G-SS EWLQ150G-SS EWLQ170G-SS EWLQ190G-SS EWLQ210G-SS EWLQ240G-SS EWLQ300G-SS EWLQ360G-SS
Cooling capacity Nom. kW 86.5 (1) 98.4 (1) 110 (1) 125 (1) 139 (1) 160 (1) 181 (1) 206 (1) 231 (1) 290 (1) 346 (1)
Capacity control Method   Step Step Step Step Step Step Step Step Step Step Step
  Minimum capacity % 50.0 43.0 50.0 44.0 50.0 45.0 50.0 43.0 50.0 40.0 50.0
Power input Cooling Nom. kW 22.4 (1) 25.8 (1) 29.2 (1) 33.0 (1) 36.8 (1) 42.0 (1) 47.0 (1) 54.2 (1) 59.9 (1) 75.6 (1) 91.8 (1)
EER 3.86 (1) 3.81 (1) 3.78 (1) 3.79 (1) 3.79 (1) 3.80 (1) 3.86 (1) 3.80 (1) 3.85 (1) 3.84 (1) 3.77 (1)
Dimensions Unit Height mm 1,066 1,066 1,066 1,066 1,066 1,066 1,066 1,066 1,066 1,186 1,186
    Width mm 928 928 928 928 928 928 928 928 928 928 928
    Depth mm 2,743 2,743 2,743 2,743 2,743 2,743 2,743 2,743 2,743 2,743 2,743
Weight Unit kg 494 578 686 714 742 773 807 838 852 967 1,046
  Operation weight kg 525 615 729 760 791 826 863 901 916 1,044 1,134
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger - evaporator Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger
  Water volume l 6 8 8 10 12 13 15 17 17 27 34
  Water flow rate Nom. l/s 4.2 4.7 5.3 6.0 6.7 7.7 8.7 9.8 11.1 13.9 16.6
  Water pressure drop Cooling Nom. kPa 44 44 35 29 29 31 33 30 38 41 41
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Compressor Type   Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor
  Quantity   2 2 2 2 2 2 2 2 2 2 2
  Oil Charged volume l 7 8 9 11 14 13 13 13 13 13 13
Sound power level Cooling Nom. dBA 80 83 85 87 88 88 88 90 92 93 93
Sound pressure level Cooling Nom. dBA 64 67 69 70 72 72 72 74 76 76 77
Operation range Evaporator Cooling Min. °CDB -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
      Max. °CDB 15 15 15 15 15 15 15 15 15 15 15
  Condenser Cooling Min. °CDB 30 30 30 30 30 30 30 30 30 30 30
      Max. °CDB 60 60 60 60 60 60 60 60 60 60 60
Refrigerant Type   R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A
  GWP   2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5
  Circuits Quantity   1 1 1 1 1 1 1 1 1 1 1
Piping connections Discharge line connection inch 1" 5/8 1" 5/8 1" 5/8 1" 5/8 1" 5/8 1" 5/8 1" 5/8 1" 5/8 1" 5/8 2"1/8 2"1/8
  Evaporator water inlet/outlet (OD)   1" 1/2 1" 1/2 2" 1/2 2" 1/2 2" 1/2 2" 1/2 2" 1/2 2" 1/2 2" 1/2 3" 3"
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 204 255 261 308 316 354 368 466 481.0 640 677
  Running current Cooling Nom. A 39 42 45 51 57 64 70 81 88 111 135
    Max A 59 66 72 80 88 102 116 131 145 183 221
  Max unit current for wires sizing A 65 72 79 88 96 112 128 144 160 201 243
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 59 66 72 80 88 102 116 131 145 183 221
  Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line + part winding Part winding
Notes Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation. Cooling: entering evaporator water temp. 12.0°C; leaving evaporator water temp. 7.0°C; condensing temperature 45.0°C, unit at full load operation.
  Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases Its functioning relies on fluorinated greenhouse gases
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load
  Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current
  Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).